Code: BE2M34NSV |
VLSI System Design |
Lecturer: prof. Ing. Pavel Hazdra CSc. |
Weekly load: 2P+2L |
Completion: A, EX |
Department: 13134 |
Credits: 6 |
Semester: W |
- Description:
-
Introduction to basic building blocks, architecture and design methodologies of advanced VLSI systems. Structure and design of digital and analogue integrated circuit subsystems. Integrated system description and synthesis using cell libraries and IP cores. Synchronization, power consumption and parasitics reduction issues. Testing and reliability of integrated systems. In seminars and labs, the hardware description language VHDL will be explained and used for practical design, synthesis and testing of a system on chip.
- Contents:
-
1. VLSI system design, principles and hierarchy. Design methodology.
2. Levels of system description. Hardware description languages for behavioral and RTL description.
3. Code structure, semantics and syntax.
4. Assignments of hardware function, concurrent and sequential domains and their interpretation.
5. Hierarchy, design of parametric models and libraries. System description in SystemVerilog and SystemC.
6. Hardware platforms, target architectures, programmable and reconfigurable systems.
7. System on chip design, design re-use, Intellectual Property (IP) cores.
8. Behavioral synthesis: RTL model, algorithms and procedures. Logical synthesis: methods and constraints. Synthesis of topology. Control of system synthesis.
9. Models of integrated systems and structures, standards.
10. Testing and reliability. Fault models and methods of localization.
11. Verification flow and strategies.
12. Verification tools: simulators and models.
13. Test design and analysis: stimuli, responses and testbenches (design and architecture).
14. VLSI system project management, risk minimization, documentation, reviewing.
- Seminar contents:
-
1. Design system ISE: introduction into integrated system design - entry, synthesis, implementation.
2. Design system ISE: functional, logical and timing analysis. Digital system model in HDL
3.HDL - description of combinational (buffers, decoders, multiplexers) and sequential (counters) functions.
4. HDL - hierarchical design and verification models (testbenches).
5. HDL - state automata description and design of complex sequential systems.
6. State automata description in the StateCad environment, end of model project.
7. Migration of model design into different architectures, design reuse.
8. IP core libraries, design using IP core generators.
9. Floor planning and timing analysis, design of architecture specific blocks.
10. Description of course works, used IP modules, test.
11. Practical design of integrated system based on FPGA or SoC.
12. Practical design of integrated system based on FPGA or SoC.
13. Practical design of integrated system based on FPGA or SoC.
14. Presentation of course works, correction test, account.
- Recommended literature:
-
[1] Wayne Wolf : "Modern VLSI Design: System-on-Chip Design", Prentice-Hall, 2002
[2] Samiha Mourad, Yervant Zorian: "Principles of Testing Electronic Systems", John Wiley, 20002
[3] Bruce Wile, John C. Goss, Wolfgang Roesner: "Comprehensive Functional Verification", Elsevier, 2005
[4] P. J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann, 2008
[5] P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability, Wiley, 2006
[6] P.K.Lala, Principles of Modern Digital Design, Wiley, 2006
- Keywords:
- VLSI, design, FPGA, ASIC
Abbreviations used:
Semester:
- W ... winter semester (usually October - February)
- S ... spring semester (usually March - June)
- W,S ... both semesters
Mode of completion of the course:
- A ... Assessment (no grade is given to this course but credits are awarded. You will receive only P (Passed) of F (Failed) and number of credits)
- GA ... Graded Assessment (a grade is awarded for this course)
- EX ... Examination (a grade is awarded for this course)
- A, EX ... Examination (the award of Assessment is a precondition for taking the Examination in the given subject, a grade is awarded for this course)
Weekly load (hours per week):
- P ... lecture
- C ... seminar
- L ... laboratory
- R ... proseminar
- S ... seminar