- Description:
-
The Autonomous robotics course will explain the principles needed to develop algorithms for intelligent mobile robots such as algorithms for:
(1) Mapping and localization (SLAM) sensors calibration (lidar or camera).
(2) Planning the path in the existing map or planning the exploration in a partially unknown map and performing the plan in the world.
IMPORTANT: It is assumed that students of this course have a working knowledge of optimization (Gauss-Newton method, Levenberg Marquardt method, full Newton method), mathematical analysis (gradient, Jacobian, Hessian), linear algebra (least-squares method), probability theory (multivariate gaussian probability), statistics (maximum likelihood and maximum aposteriori estimate), python programming and machine learning algorithms.
This course is also part of the inter-university programme prg.ai Minor. It pools the best of AI education in Prague to provide students with a deeper and broader insight into the field of artificial intelligence. More information is available at https://prg.ai/minor.
- Contents:
-
https://cw.fel.cvut.cz/wiki/courses/aro/lectures/start
- Seminar contents:
-
https://cw.fel.cvut.cz/wiki/courses/aro/tutorials/start
- Recommended literature:
-
1. Siciliano, Bruno and Sciavicco, Lorenzo and Villani, Luigi and Oriolo, Giuseppe: Robotics, Modelling,
Planning and Control, Springer 2009
2. Fahimi, F.: Autonomous Robots: Modeling, Path Planning, and Control, Springer 2009
Abbreviations used:
Semester:
- W ... winter semester (usually October - February)
- S ... spring semester (usually March - June)
- W,S ... both semesters
Mode of completion of the course:
- A ... Assessment (no grade is given to this course but credits are awarded. You will receive only P (Passed) of F (Failed) and number of credits)
- GA ... Graded Assessment (a grade is awarded for this course)
- EX ... Examination (a grade is awarded for this course)
- A, EX ... Examination (the award of Assessment is a precondition for taking the Examination in the given subject, a grade is awarded for this course)
Weekly load (hours per week):
- P ... lecture
- C ... seminar
- L ... laboratory
- R ... proseminar
- S ... seminar