Code: NIE-ROZ Pattern Recognition
Lecturer: prof. Ing. Michal Haindl DrSc. Weekly load: 2P+1C Completion: A, EX
Department: 18101 Credits: 5 Semester: W
Description:
The aim of the module is to give a systematic account of the major topics in pattern recognition with emphasis on problems and applications of the statistical approach to pattern recognition. Students will learn the fundamental concepts and methods of pattern recognition, including probability models, parameter estimation, and their numerical aspects.
Contents:
1. Elements of pattern recognition.
2. Basic pattern recognition concepts.
3. Bayesian decision theory.
4. Learning theory.
5. Parametric classifiers.
6. Non-parametric classifiers.
7. Support vector machines.
8. Hierarchical classifiers.
9. Pattern recognition using neural networks.
10. Classification quality estimation.
11. Dimensionality reduction.
12. Feature selection.
13. Cluster analysis.
Seminar contents:
1. Course project assignment.
2. Consultations.
3. Consultations.
4. Consultations.
5. Consultations.
6. Course project control.
7. Consultations.
8. Consultations.
9. Consultations.
10. Consultations.
11. Consultations.
12. Projects presentation workshop.
13. Projects presentation workshop, assessment.
Recommended literature:
1. Devijver, P. A., Kittler, J. ''Pattern Recognition: A Statistical Approach''. Prentice Hall, 1982. ISBN 0136542360.
2. Duda, R. O., Hart, P. E., Stork, D. G. ''Pattern Classification (2nd Edition)''. Wiley-Interscience, 2000. ISBN 0471056693.
3. Webb, A. R. ''Statistical Pattern Recognition (2nd Edition)''. Wiley, 2002. ISBN 0470845147.
4. Theodoridis, S., Koutroumbas, K. ''Pattern Recognition''. Academic Press, 2008. ISBN 1597492728.
Keywords:
pattern recognition, classification, clustering, feature selection / extraction, learning

Abbreviations used:

Semester:

Mode of completion of the course:

Weekly load (hours per week):