Code: E111051 |
Strength of Materials I. |
Lecturer: doc. Ing. Tomáš Mareš Ph.D. |
Weekly load: 3P+3C |
Completion: A, EX |
Department: 12105 |
Credits: 7 |
Semester: S |
- Description:
-
This course is to provide the ability to comprehend and analyze basic types of loading of simple machine members in order to determine their stress states and deformations. This provides tools for dimensioning the members and/or determining their allowable loading. This subject also provides the prerequisite for other advanced and special courses concerning the theory of elasticity and plasticity. Seminars are devoted to practical design and computation of simple machine elements.
- Contents:
-
1. Tension and compression.
2. Trusses both statically determinate and indeterminate
3. 2D- and 3D-stress state (principal stresses and planes and maximum shearing stress).
4. Strain energy for multiaxial stress state.
5. Theories of failure.
6. Torsion of circular bars.
7. Centroids, second moments of area, and products of inertia of plane areas.
8. Bending of beams (shearing force, bending moment, normal and shearing stresses in beams).
9. Deflection of beams.
10. Statically indeterminate beams.
11. Combined loading (unsymmetrical bending; bars with axial loads; bending and torsion; torsion and tension; bending and shear).
12. Design for fatigue strength (cyclic loading; S-N diagram; Smith's and High's fatigue diagrams)
13. Safety factors for fatigue strength; stresses due to combined loading.
14. Thin-walled rotational membranes.
- Seminar contents:
-
1. Tension and compression.
2. Trusses both statically determinate and indeterminate
3. 2D- and 3D-stress state (principal stresses and planes and maximum shearing stress).
4. Strain energy for multiaxial stress state.
5. Theories of failure.
6. Torsion of circular bars.
7. Centroids, second moments of area, and products of inertia of plane areas.
8. Bending of beams (shearing force, bending moment, normal and shearing stresses in beams).
9. Deflection of beams.
10. Statically indeterminate beams.
11. Combined loading (unsymmetrical bending; bars with axial loads; bending and torsion; torsion and tension; bending and shear).
12. Design for fatigue strength (cyclic loading; S-N diagram; Smith's and High's fatigue diagrams)
13. Safety factors for fatigue strength; stresses due to combined loading.
14. Thin-walled rotational membranes.
- Recommended literature:
-
1. Sochor, M.: Strength of Materials I, CTU Publishing House, Prague, 1998,
2. Nash, W.A.: Strength of Materials, Schaum's outline series, 2nd edition, McGraw-Hill, INC, 1998
3. Gere, J.M: Mechanics of Materials, Thomson Learning, Inc. 2004
- Keywords:
- 2D and 3D stress state; strain energy; loading in tension, compression, bending and torsion; fatigue strength; thin-walled rotational membranes
Abbreviations used:
Semester:
- W ... winter semester (usually October - February)
- S ... spring semester (usually March - June)
- W,S ... both semesters
Mode of completion of the course:
- A ... Assessment (no grade is given to this course but credits are awarded. You will receive only P (Passed) of F (Failed) and number of credits)
- GA ... Graded Assessment (a grade is awarded for this course)
- EX ... Examination (a grade is awarded for this course)
- A, EX ... Examination (the award of Assessment is a precondition for taking the Examination in the given subject, a grade is awarded for this course)
Weekly load (hours per week):
- P ... lecture
- C ... seminar
- L ... laboratory
- R ... proseminar
- S ... seminar