Code: E311102 Mechanics II.
Lecturer: doc. Ing. Václav Bauma CSc. Weekly load: 2P+2C Completion: A, EX
Department: 12105 Credits: 4 Semester: S
Description:
Kinematics of point and of rigid bodies. Transformation matrix. Kinematics of concurrent movements. Motion: translation, rotation, general planar motion, spherical motion, screw motion, general spatial motion. Composition of mechanisms. Basic planar mechanisms.
Analytical methods in kinematics of mechanisms - Trigonometric and vector method. Graphical methods in kinematics. Basic theory of gearing. Transmition mechanisms with geers. Strutting and seezing in mechanisms. Cable mechanisms.
Contents:
- Kinematics of point.
- Kinematics of rigid bodies.
- Transformation matrix.
- Kinematics of concurrent movements.
- Kinematics of rigid bodies.
- Motion: translation, rotation, general planar motion, spherical motion, screw motion, general spatial motion
- Composition of mechanisms.
- Basic planar mechanisms.
- Analytical methods in kinematics of mechanisms.
- Trigonometric and vector method.
- Basic theory of gearing.
- Transmition mechanisms with geers.
- Strutting and seezing in mechanisms.
- Cable mechanisms.
Seminar contents:
- Kinematics of point.
- Kinematics of rigid bodies.
- Transformation matrix.
- Kinematics of concurrent movements.
- Kinematics of rigid bodies.
- Motion: translation, rotation, general planar motion, spherical motion, screw motion, general spatial motion
- Composition of mechanisms.
- Basic planar mechanisms.
- Analytical methods in kinematics of mechanisms.
- Trigonometric and vector method.
- Basic theory of gearing.
- Transmition mechanisms with geers.
- Strutting and seezing in mechanisms.
- Cable mechanisms.
Recommended literature:
Beer F.P., Johnson E.R.: Vector Mechanics for Engineers. Statics and Dynamics. McGraw-Hill, New York 1988.

Abbreviations used:

Semester:

Mode of completion of the course:

Weekly load (hours per week):