Code: 12ZFP |
Principles of Plasma Physics |
Lecturer: prof. Ing. Jiří Limpouch CSc. |
Weekly load: 3+1 |
Completion: A, EX |
Department: 14112 |
Credits: 4 |
Semester: S |
- Description:
-
Basic physics of high temperature plasmas is explained using particle, kinetic and fluid approaches. It includes drift motions and adiabatic invariants, linear theory of waves in plasmas and propagation of electromagnetic waves in inhomogeneous plasmas. Basic non-linear effects, such as ponderomotive force, self-focusing and parametric instabilities are explained. It comprises brief introduction into magnetohydrodynamics and nuclear fusion. Basics of atomic physics od multiply-ionized plasmas are introduced.
- Contents:
-
1.Plasma definition; Debye screening, plasma parameter, plasma frequency, collisions of charged particles, Landau length, Coulomb logarithm, collective behavior, ideal and non-ideal plasma, weakly and strongly coupled plasmas
2.Motion of charged particles in external fields
3.Adiabatic invariants, ponderomotive force
4.Principles of kinetic theory, Klimontovich equation, Vlasov equation, Krook collision term
5.Plasma as dielectric medium, temporal and spatial dispersion; two-fluid hydrodynamics
6.Plasma oscillations, plasma waves in fluid and kinetic description, Landau damping, wave energy
7.Bernstein-Greene-Kruskal modes, plasma waves in magnetic field
8.Principles of Particle-in-Cell simulations
9.Ion sound waves; electromagnetic waves in plasma, 10.Non-linear propagation of waves, relativistic, ponderomotive and thermal non-linearity, self-focusing and filamentation
11.Propagation of electromagnetic waves in magnetoactive plasmas
12.Parametric instabilities
13.One fluid approximation, ideal and non-ideal magnetohydrodynamics, hydromagnetic equilibrium, Rayleigh-Taylor and Kruskal-Schwartzschild instabilities
14.Diffusion in weakly and strongly ionized plasmas, 15.Introduction into atomic physics of plasmas, collisional and radiative processes, principle of detail balancing
16.Local thermodynamic equilibrium, coronal equilibrium, radiation from plasmas
17.Nuclear fusion, fusion reactions, Lawson criterion, magnetic confinement, pinch effect, inertial confinement
18.Kinetic theory, approximations leading to Fokker-Planck collision term
19.Examples of solution of Fokker-Planck equation
- Seminar contents:
-
1.Debye screening, Debye length, plasma parameter, plasma frequency, collisions of charged particles, Landau length, Coulomb logarithm
2. Vlasov equation, Krook collision term, deriívation of two-fluid hydrodynamics, diamagnetic drift
3.Plasma oscillations, plasma waves in fluid and kinetic description, Landau damping, wave energy
4. Demonstration using PIC code ES1 = plasma waves, Landau damping, two-stream instability
5.Ion sound waves; electromagnetic waves in plasma, critical density, wave propagation in planar plasma
6.One fluid approximation, ideal and non-ideal magnetohydrodynamics, hydromagnetic equilibrium, Rayleigh-Taylor and Kruskal-Schwartzschild instabilities
7.Diffusion in weakly and strongly ionized plasmas, ambipolar diffusion, plasma-wall interaction, sheath, Bohm criterion, 8.Introduction into atomic physics of plasmas, multiply-charged ions, excitation and autoionization states, collisional and radiative processes, oscillator strength, direct and inverse processes, principle of detail balancing
- Recommended literature:
-
Key references:
[1] F.F. Chen, Plasma Physics and Controlled Fusion, 2nd ed., Plenum Press, 1984
[2] D.R. Nicholson, Introduction to Plasma Theory, J. Wiley 1983
Recommended references
[3] S. Ichimaru, Statistical Plasma Physics, Volume I: Basic Principles, Addison-Wesley, Redwood City, 1992
[4] S. Eliezer: The Interactions of High-Power Lasers with Plasma, IOP Publishing, Bristol 2002
[5] D. Salzman: Atomic Physics in Hot Plasmas, Oxford University Press, Oxford 1998
- Keywords:
- Kinetic theory, fluid description, drifts, waves, fusion, instabilities, non-linearities.
Abbreviations used:
Semester:
- W ... winter semester (usually October - February)
- S ... spring semester (usually March - June)
- W,S ... both semesters
Mode of completion of the course:
- A ... Assessment (no grade is given to this course but credits are awarded. You will receive only P (Passed) of F (Failed) and number of credits)
- GA ... Graded Assessment (a grade is awarded for this course)
- EX ... Examination (a grade is awarded for this course)
- A, EX ... Examination (the award of Assessment is a precondition for taking the Examination in the given subject, a grade is awarded for this course)
Weekly load (hours per week):
- P ... lecture
- C ... seminar
- L ... laboratory
- R ... proseminar
- S ... seminar